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Abstract: Frequent patterns are patterns that appear frequently in a data set. Frequent pattern mining searches for 

recurring relationships in a given data set. It plays an important role in mining associations and correlation analysis 

among data, is an important data mining task. This work focuses on discovering frequent item sets in data-stream 

environments which may suffer from data overload. Stream data refer to data that flow into a system in vast volumes, 

change dynamically and contain multidimensional features. The traditional frequent pattern algorithms are not suitable 

to find frequent patterns from stream data. This paper proposed a frequent pattern mining algorithm integrate two data 

overload handling mechanisms. It extracts basic information from streaming data i.e. frequency of data items and keeps 

as base information. On user requirement the frequent pattern mining algorithm generates frequent item set from base 

information by using approximate inclusion-exclusion technique to calculate the approximate counts of frequent item 

sets. Self adaptive sliding window time model has been implemented to process the data stream. When data overload 

exists, the algorithm chooses data overload mechanism based on the nature of the data. The experimental results 

showed that the mining algorithm performed well in data overload state and generated frequent item set.  
 

Keywords: Data mining, Stream data, Frequent patterns, Approximate inclusion-exclusion, Adaptive sliding window 

model, Data overload handling mechanisms. 

I. INTRODUCTION 

Today, many commercial applications use online services. 

They have presented their data in the form of continuously 

transmitted stream, namely data streams. A stream data is 

ordered sequences of items that arrive continuously with 

high speed and have a data distribution that often changes 

with time [5]. Hence, there is a need to design an efficient 

frequent pattern mining algorithm for finding frequent 

item set with load shedding techniques. The association 

rule mining consists of two step processes. First, find 

frequent pattern from the database and then generate an 

association rule. Frequent pattern mining [1] helps to 

discover implicit, previously unknown, and potentially 

useful knowledge in the form of frequently occurring sets 

of items that are hidden in the data. Data stream mining is 

a technique to continuously discover useful information or 

knowledge from a large amount of running data elements. 

Data stream mining algorithms implements three kinds of 

time models[17] to process the stream data, i)Landmark 

window model ii) Damped/fading window model iii) 

Sliding window model. The landmark window model 

covers all data elements that have ever been received. In 

damped/fading window model, each data element is 

associated with a variable weight and recent elements have 

higher weights than previous ones. The sliding window 

model fixed window length which moves with time is 

given, and the range of mining covers the recent data 

elements contained within the window. Self adaptive 

sliding window model learns the sliding window control 

parameters dynamically adapt the window size when 

patterns are mined from the stream. A data stream mining 

system may suffer the problem of data overload. The  

 

 
transmission rate of a data stream is usually dynamic and 

its running speed may change with time. When the data 

transmission rate of the data-stream source exceeds the 

data processing rate of the mining algorithm of a mining 

system, e.g., during a peak period, the system is 

overloaded with data and can’t handle all incoming data 

elements properly within a time-unit. And also produce 

flawed results or come into a crash. To solve this problem 

data overload mechanism should be incorporated within 

the algorithm to adequately deal with data overload. In this 

paper, two data overload mechanism has been proposed 

for discovering frequent patterns effectively in 

transactional data streams. The rest of this paper is 

organized as follows. In Section 2, related work regarding 

data-stream frequent-pattern mining and data-overload 

handling is described. Section 3 represents the problem 

definition. In Section 4, a mining algorithm together with 

two overload-handling mechanisms is proposed and 

explained in detail. Section 5 presents the analysis of 

experimental results. Finally, Section 6 concludes this 

work. 

II. RELATED WORK 

Apriori algorithm [1] is the first algorithm for mining 

frequent item sets. It has implemented an iterative 

approach known as a breadth-first search through the 

search space where k-item sets have used to explore (k+1)-

item sets. It scanned the database each time to generate 

candidate item set. As a result, it has required more time 

complexity and space complexity to complete the task. 

Discovering frequent item set from data stream is more 
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challenging as (i) data streams are continuous and 

unbounded (ii) data in the streams are not necessarily 

uniformly distributed. Frequent-pattern mining [2] from 

the data streams have initially limited to singleton items. 

Lossy Counting (LC) [13] is the first practical algorithm 

used to discover frequent item sets from transactional data 

streams. This algorithm has implemented under the 

landmark window model. In addition to the minimum-

support parameter (ms), LC also uses an error-bound 

parameter ε to maintain those infrequent item sets having 

the potential to become frequent in the near future. LC has 

processed the stream data batch by batch, and each batch 

includes bucket(s) of transactions. With the use of 

parameter ε, when an item set newly found LC had known 

the upper-bound count of the frequent item set. In [3], the 

author has implemented LC algorithm using a sliding 

window model. The authors [14] suggested the 

Approximate Inclusion–Exclusion technique to obtain the 

frequent count of k-item set from frequent 2-item set. If all 

the subsets value had known, then the actual value of a 

union term would have been found easily. Apriori 

algorithm scanned the database multiple times to generate 

frequent item sets. However, it is not possible in data 

stream mining. Since the system couldn’t retrieve the past 

data stream details from current data stream, has required 

more memory to store it.  
 

The authors [11] proposed a data stream frequent pattern 

mining algorithm under the sliding window model, used 

DS-Tree data structure for capturing the contents of 

transactions in each batch of data within the current sliding 

window. It required more time to update the tree structure 

for every batch. According to the experimental results, the 

algorithm has attained 100% accuracy but not suitable for 

long stream transactions. Since this method should have 

enumerated item set for each transaction. CPS-Tree which 

has closely related to DS-Tree, the authors [16] used to 

discover frequent patterns from a data stream under sliding 

window model. Unlike DS-Tree, CPS-Tree stored the 

batch information only at the last node of each path to 

reduce the memory consumption.  
 

The authors of [3] proposed Online Combinatorial 

Approximation (OCA) algorithm, use Apriori algorithm to 

find frequent 2-item sets. It generates higher order 

frequent item sets from frequent 2-item sets using 

Approximate Inclusion–Exclusion technique. It required 

less time to generate n-frequent item set compared with 

traditional algorithms, not suitable for mining frequent 

item sets over transactional data streams. The authors 

extended the algorithm and named as Data Stream 

Combinatorial Approximation algorithm (DSCA) [9] 

which has been implemented under the landmark window 

model and generates all item sets of length 1 and 2 

existing in the data stream. The mining task used 

Approximate Inclusion-Exclusion technique to compute 

the approximate count of longer item sets during frequent 

pattern mining. It kept all the details in the base 

information to generate higher order frequent item sets.  
 

The Loadstar system [5] measures the level of uncertainty 

in the classification model. The experimental results 

showed that offers a good solution to data-stream 

classification with the presence of system overload. The 

authors of [7] proposed a load controllable frequent 

pattern mining system which used LC under sliding 

window model. The system effectively handles the 

workload during peak periods. Three kinds of load 

shedding mechanisms  proposed in [4] to address the data 

overload like i) Efficiency oriented policy ii) Complexity 

oriented policy iii) Accuracy oriented policy. The 

proposed work incorporates these load shedding 

mechanisms in frequent pattern mining task to handle load 

at peak periods.  

III. PROBLEM DEFINITION 

Let I ={x1, x2, . . ., xz} be a set of attributes, and each xi in 

I be a single item. An item set (or a pattern) X is a subset 

of I and written as X = xi x j. . .xm. The length of an item 

set is the number of items it contains, and an item set of 

length l is called an l-item set. A transaction T consists of 

a set of ordered items, and T supports an item set X if 

X€T. The support of an item set X in a group of 

transactions is the number of occurrences of X within the 

group. An item set X of length l which is a subset of 

another item set Y or a transaction T is called a l-subset of 

Y or T. A transaction data stream on I is a continuous 

sequence of elements where each element is a transaction.  
 

A threshold of minimum support (ms) and a size of the 

sliding window (sw) are two parameters specified by the 

user. The objective of frequent-pattern mining is to find 

frequent pattern from data elements within the current 

sliding window. There are two basic strategies have used 

to design a sliding window model in data stream mining 

i)count based window model ii)time based window model. 

Assume that there is a mining algorithm A running on a 

mining system and a data-stream source D. Let the 

processing rate of A on stream elements be z transactions 

in a time-unit, and the data transmission rate of D be w 

transactions at a time. A data stream is continuous and 

dynamic; its transmission rate is dynamic. The data load L 

at a point is defined to be the ratio of transmission rate to 

processing rate at that point,(i.e) L = w/z. As the value of 

w becomes greater and closer to that of z, the mining 

system which operates A will get busier in processing the 

continuously arriving data.  
 

When the transmission rate of D becomes higher than the 

data processing rate of A (i.e., w > z or L is over 100%), 

the mining system is said to be data overloaded. In a data-

overloaded situation, the system will receive a batch of w 

stream transactions within a time-unit whose quantity goes 

beyond its processing capability of z transactions. Data 

overload may cause a mining system to perform 

abnormally. It is an important issue for a data-stream 

mining algorithm which should not be neglected. The goal 

of this research work is to develop a mining algorithm 

together with mechanisms for overload management to 

support frequent-item set discovery under self adaptive 

sliding window model in a dynamic data-stream 

environment. 
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3.1 Self Adaptive Sliding Window Model 
 

The proposed algorithm uses self adaptive sliding window 

model for processing the data stream. In this model, the 

total window (W) was divided into two sub-windows as 

W0 and W1. The length of an item sets in W0 and W1 is 

denoted as n0 and n1.respectively. The total number of 

transactions in the data stream was denoted as n. The 

harmonic mean(m)  is calculated by using equation(1) 
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The approximate confidence value was calculated with 

respect to user specified confidence value and the total 

number of transactions n. The approximate confidence 

value 
ιδ  is calculated by using equation(2) 
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The window size of the self adaptive sliding window 

varies each and every time based on the batch that enters 

into the sliding window The cut  is used for splitting the 

sub-windows dynamically based on the batch size. The

cut  value was obtained by harmonic mean and an 

approximate confidence value. The Equation 3 denotes the 

cut   value based on the current batch in the sliding 

window. 
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IV. FREQUENT PATTERN MINING ALGORITHM 

WITH LOAD SHEDDING MECHANISMS 
 

4.1 Transaction data stream 
 

The transaction data stream consists of set of transaction 

with its respective item set of market basket data. Table 1 

denotes the sample transaction dataset. It consists of ten 

transactions. The item set I has 4 items like {milk, bread, 

cheese, butter}    
 

Table 1 Sample Transaction Dataset 
 

TID  ITEMS 

T01 {milk, cheese, butter} 

T02 {milk, bread, cheese, butter} 

T03 {cheese, butter} 

T04 {milk, bread, butter} 

T05 {bread, butter} 

T06 {bread, cheese} 

T07 {milk, butter} 

T08  {milk, bread, cheese} 

T09 {milk, bread, butter} 

T10 {milk, bread, cheese, butter}  

 

4.2 Frequent 2- Item Set Generation 
 

At first step, frequent item set mining algorithm computes 

the frequency count of 1 and 2-item sets by scanning the 

transaction from the data stream. The base information 

contains the frequency count of all 1-item sets and 2-item 

sets existing in the data stream by using Apriori algorithm.  
 

4.1.3 Frequent N-Item Set Generation by using 

Approximate Inclusion-Exclusion Technique 
 

4.1.3.1 Skip and Complete Technique 
 

The skip and complete technique accelerates the speed of 

processing and increases the throughput of the frequent 

mining algorithm. For every incoming transaction, it finds 

all 1-item set, 2-item set and records their counts and 

stores the same in the base information. Assume that every 

transaction is sorted in order with its items in pattern-

growth manner. In skip and complete technique, 3-item set 

is generated by joining a 2-item set with a 1-item, where a 

2-itmset is called a prefix item set while a 1-item is called 

a stem item. Fig. 1 illustrates the process of skip and 

complete technique. 

 
 

Fig. 1 Skip and complete technique 
 

There is a transaction which consists of 4 items. For 

finding all 3-item set subsets involved in this transaction, a 

basic and intuitive way is to fix a certain prefix item set 

first, and then sequentially finds all stem items with the 

members of that prefix item set. Every found stem item 

joining with the prefix item set will result in a 3-item set. 

For the transaction in Fig. 1, it starts with the least prefix 

item set {milk,bread} to generate 3-item sets. When prefix 

{milk,bread} is done, it then proceeds with prefix 

{milk,cheese}, prefix {bread,cheese}, and so forth.  
 

The basic idea behind this technique is that, even if it does 

not access all stem items of all prefix item sets in a 

transaction, it can still find all the 3-item set subsets 

contained in that transaction completely and correctly. 

Since it access all stem items of every prefix item set, the 

saving in access time may reduce the process time of 

handling every incoming transaction, hence the throughput 

of the incoming stream processing is improved. 
 

4.1.3..2 Group Count Technique  
 

The group count technique dealt with the intention to 

reduce the memory consumption of mining algorithm. If 

the user wishes to keep information about the entire item 

set of length 3 in the lexicographic order tree, it needs 
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more than 166 million additional nodes for recording. This 

amount of nodes will consume a great deal of memory 

space, perhaps more than 1 GB. In the consideration 

between the approximate accuracy and the memory usage, 

it is designed a way to record the 3-item sets’ counts in 

grouped form. 3-item sets which belong to the same 2-

item set prefix are grouped by a number of n, and then 

their counts are recorded together. That is, it makes every 

3-item sets to form a group, and increase the group’s count 

when any member in that group is found in a transaction.  
 

 
Fig. 2   Group count technique 

 

 Fig. 2 illustrates the process of group count technique, for 

all 3-item sets which have 2-item set prefix {milk, bread} 

in the data stream, it make every four item sets to form a 

group which belongs to {milk, bread} and the number of 

all groups of {milk, bread} in proper order. When any 

member of {milk, bread, cheese},{milk, bread, butter} is 

found in a transaction , it increases the count of the group 

it belongs to. With this technique, it can keep the 

information about 3-item set with less memory usage. 
 

4.1.3.3 Approximate Inclusion-Exclusion Technique  
 

The frequent item set of length n can be calculated by 

using the approximate inclusion exclusion technique 

without continual scanning the data stream. The 

approximate inclusion exclusion technique is based on 

principle of inclusion exclusion technique. With this 

technique, approximate count of each frequent item set can 

be generated. The Principle of Inclusion and Exclusion is 

under combinatorial mathematics.  
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The Equation 4 is applied for calculating the support count 

of item sets mA...2A 1A  . It derives the support count 

for m-item set, only if all the subsets are given. If any of 

the subsets are not available, only the approximate count 

can be calculated.  
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The Equation 5 has been derived from the principle of 

approximate inclusion-exclusion which is used for 

calculating the approximate count. Here k denotes the base 

information size, m denotes the candidate item sets length 

and S denotes the subsets. 
 

In Equation 5, 
iAsi

ks




 denotes the summation of 

counts for all m-subsets with length m and mk
s
,  

represents the coefficients of the linearly transformed 

Chebyshev polynomial which refers to the variety of items 

including first or most significant item set whose values is 

derived as follows. 
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In Equation 6, i,j,k,m represents the item set, length of an 

item set, base information size, target item set length 

respectively, where m=k+1. ija  represents the i
th

 item set 

of j
th

 item set and t represents the constant value with 

respect to i,k,m. 
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The Equation 8 is used to calculate i
th

 item set of j
th

 item 

set. C represents the combination in combinatorial 

mathematics and j
iC represents the combination of i item 

set from j item set. 
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The Equation 9 is used for calculating the approximate 

count of m item set with the help of m-union item set 

value which is obtained from Equation 4.1.Here, down 

closure property is used to prune the item sets.  
 

4.1.4 Overload Handling Mechanism 
 

The algorithm has higher performance on processing 

incoming stream elements than ε-deficient mining or exact 

stream mining methods, since it keeps base information 

and carries out the mining task. It calculates a count 

approximation for candidate item sets based on the kept 

information.  The base information consists of k orders of 

item sets out on all orders of item sets.  So, the 

performance of the algorithm is better than ε-deficient 

mining or exact stream mining methods. As a result, the 

algorithm easily handles the data overload .The processing 

rate and processing time of an algorithm used to measure 

the performance of the algorithm. The proposed algorithm 

uses processing acceleration mechanism and adaptive 

sliding window model to raise the data processing rate of 

the mining algorithm. Approximate Inclusion–Exclusion 

technique is used to implement processing acceleration 

mechanism. 
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When the data transmission rate of a data stream D 

becomes higher than the data processing rate of a mining 

algorithm A, the mining system receives stream elements 

within a time-unit by the amount w beyond its processing 

capability of  z elements. Assume that the average length 

of stream elements in a batch is n items per transaction. To 

solve this problem the proposed algorithm proposes 

priority based data load shedding techniques which prunes 

the received data. The discarded data may be an attribute 

or a transaction. Dropping the unprocessed data without 

any care may bring about effects on the performance of 

mining because the discarded data may have some useful 

information. It proposes two policies i) Frequency oriented 

policy ii) Accuracy oriented policy.  
 

4.1.4.1. Frequency Oriented Policy 
 

This policy prunes the unprocessed data in terms of 

attribute. If the amount of attributes in a data source is 

decreased, the possible number of pattern combinations 

will be correspondingly diminished. The priority function 

utilizes down closure property of an item set (i.e) the 

frequency count in the previous batch to decide the 

priority value of each attribute. Since an attribute with low 

frequency has less influence on the frequent pattern 

generation than an attribute with high frequency, discard 

the attributes which are having low frequencies. An array 

is used to record the counts and priority values of the 

attributes, which is called as priority table. In these 

transactions, those attributes having the lowest priority 

values are eliminated from the transactions. 
 

4.1.4.2. Accuracy Oriented Policy 
 

The accuracy oriented policy aims at preserving the 

accuracy of mining after load shedding. The load shedding 

mechanism with this policy trims the unprocessed data by 

deleting some transactions inside it. This policy use 

counts-bounding technique proposed by Jea and Li (2009), 

to approximate the count of an item set X. A transaction 

containing more 2-item sets which are frequent is 

considered to be more important than a transaction 

containing less frequent 2-item sets. The transaction 

having lowest count will be given less priority and is 

discarded. Because the function of frequent 2-item sets is 

to limit the count ranges of 1-item sets, a transaction 

containing more 2-item sets which are frequent is 

considered to be more important than a transaction 

containing less frequent 2-item sets. This policy requires 

some feedback information from the previous batch. If a 

transaction contains less potential frequent 2-item sets, it 

has lower priority-value and will be dropped with a higher 

possibility. It is a time consuming problem. So the 

algorithm use group count technique to quickly calculate 

the maximum possible number of potential frequent 2-item 

sets (as subsets) in a transaction. 
 

Algorithm: 
 

Input: A transactional data stream (D), the minimum-

support value (ms), initial sliding-window size (sw) 
 

Output: A set of frequent item sets F 

Method: 

Build an empty trie P; 

while (data of D is still streaming ) 

 do begin 

Clear the contents in F; 

        while (there is no request from the user ) 

do begin 

            Receive from D a batch B of transactions; 

            Calculate n the average length of transactions in B; 

            Compute the window size by using Eq.(3.3) and     

             update window size 

            Set the base-information size k for a value    

             satisfying k ≥√n 

                   for (i = 1; i ≥ k; i++)  

                    do 

                       Extract all i-itemsets whose supports in B  

                       satisfy the base threshold ˇ; 

                        Update entries of the found i-itemsets in P; 

                      end for 

update the base information  

    end while 

for (i = 1; i ≥ k; i++) do 

Find all large i-itemsets in P and insert them as Fi into 

F; 

end for 

for (m = k + 1; F m−1 ≠ NULL; m++)  

do 

foreach candidate m-itemsets X  

do 

Calculate the counts of X by Eq. (4.1) based on the 

base information; 

if  X’s approximate count _ sw×ms then 

Insert X as a member of  Fm into F; 

end if 

      end foreach 

end for 

Return F as the mining outcome; 

end while 
 

V. EXPERIMENTAL ANALYSIS 
 

This section shows empirical evidence about the proposed 

method. The experiments were conducted to evaluate the 

performance of the algorithm as well as the overload-

handling mechanisms. All experiments were carried out on 

a platform of personal computer with an Intel 2.80 GHz 

dual-core processor with 2 GB of available memory space 

in WindowsXP operating system. The programs of the 

mining algorithm and the overload-management 

mechanisms are implemented using NETBEANS. The 

testing data include both synthetic and real-life datasets. 

Synthetic datasets are created by using IBM’s synthetic-

data generator and each dataset is generated with the 

parameters Ts.It.Du.Av, where s, t, u, and v respectively 

represent the average length of transactions, the average 

length of potentially frequent item sets, the amount of 

transactions, and the amount of attributes in the dataset. 

Every adopted synthetic dataset consists of 700 thousand 

of transactions. The real-life dataset used in the 

experimental evaluation is BMS-POS, which can be 

acquired from the well-known website namely FIMI. This 
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dataset contains a several-year quantity of point-of-sale 

data from a large electronics retailer. These datasets are 

used to simulate transactional data streams.  
 

The sliding window in the experiments is set for the size 

of  700k of transactions. Initially it is divided into 70 

equal-sized segments. In next iteration the window size is 

calculated automatically based on the size of the stream. 

The base threshold ˇis set to be 5 occurrences in a batch. 

The algorithm is evaluated based on mining performance 

and mining accuracy, where performance is measured in 

terms of run-time and accuracy is measured in terms of 

precision, recall and Fβ measure is used to evaluate the 

accuracy of the algorithm, measures the effectiveness of 

retrieval with respect to a user β times as importance to 

recall as precision. It is based onVan- Rijsbergen’s 

effectiveness measure 
 

  111
 RPE 

   (10) 

E1F     (11) 
 

Where 
21

1





  , β is user defined value (i.e.) at what 

percentage the user give importance to recall. 

Implementing Lossy Counting (LC) algorithm under self 

adaptive sliding window model  using NETBEANS for 

comparison. The minimum support (ms) in the experiment 

is in the values ranging from 0.1% to 1.0%; the parameter 

ε of Lossy Counting is set to be 0.1*ms, which is 

suggested by the authors. Given a test dataset, mining 

algorithms are run on the dataset several times with 

different values of ms and find the optimal value. First 

generate a T15.I6 dataset. Since the average length n of 

transactions in this dataset is 15, it can be calculated that

n =4.The default size k of base information to be 5. 
 

5.1 Experiment 1: Frequrent Data Stream Mining 

without Data Load Shedding Techniques 
 

Fig. 3 and Fig. 4 show the mining performance of the 

proposed algorithm and Lossy counting algorithm. The 

run-time of the proposed algorithm has less impact with 

different values of ms. But, Lossy Counting runs as fast as 

the algorithm at larger values of ms but its run-time gets 

longer as smaller ms are given. This fact is due to the 

number of frequent item set is high when ms has low value 

and the value of  ε dependent on ms. The processing 

acceleration mechanism useful for reducing the processing 

time of the proposed algorithm.  
 

    
 

Fig. 3 Mining Performance on T15.16 

 

Fig. 4 Mining Performance BMS-POS data set 
 

 
Fig. 5 Mining accuracy on T15.16 

 

 
Fig. 6 Mining Accuracy on BMS-POS 

 
 

Fig. 5 and Fig. 6 illustrate the mining accuracy of the 

algorithms on T15.16 and BMS-POS data set.  From the 

results observed that the mining accuracy of the proposed 

algorithm is slightly lower than the LC algorithm at low 

ms values. The proposed algorithm gives 75% importance 

to recall than precision. But, its average score of  Fβ-

measure is greater than 94%. It shows that generate more 

accurate result than LC method. From the result, the 

processing acceleration mechanism (i.e.) self adaptive 

sliding window model and dynamic k size lend a hand to 

improve the throughput of the algorithm. 
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5.2 Experiment II: Algorithm with Data Load 

Shedding Techniques 
 

Fig. 7 Mining performance of proposed alogithm with load 

shedding techniques on T15.16 

 

Fig. 8  Mining performance of proposed alogithm with 

load shedding techniques on BMS-POS data 

 

 
Fig. 9 Mining accuracy of proposed alogithm with load 

shedding techniques on T15.16 

 

 
Fig 10 Mining accuracy of proposed alogithm with load 

shedding techniques on BMS-POS data 
 

In this experiment, the performance of the algorithm is 

evaluated with the load shedding mechanism during data 

overloading situations. The two proposed policies for the 

mechanism are separately tested and then compared 

together. The performance is tested on different data-load 

degrees, ranges from 80% (i.e., normal)  to 150% (i.e., 

highly overloaded) with 10% intervals. 
 

Lossy Counting requires more run time than the proposed 

method across different data loads. Since it has no data 

overload shedding function.  So, it needs to process and 

maintain larger amount of item sets.  When the data load 

shedding mechanism is disabled, the proposed algorithm 

needs more run time. If the data load shedding mechanism 

is enabled, then the run time of the proposed algorithm is 

reduced based on the policy being adopted.  The frequency 

oriented policy reduces the number infrequent item set 

based on down closure property. So the number of item set 

combination is reduced in the trimmed data set. The 

accuracy-oriented policy trims the unprocessed data by 

deleting some transactions inside it by using counts 

bounding technique to approximate the count of an item 

set X. This policy requires some feedback information 

from the previous batch. It consumes more run time 

compared with frequency oriented policy. The mining 

accuracy of this policy is preserved by counts bounding 

technique. The choice of data load shedding policy is fully 

dependent on the application needs. Since the different 

applications have different priorities of quality and 

performance requirements. From the analysis I concluded 

that, the accuracy-oriented policy is most suitable where 

the application give more importance to the quality of 

mining outcome. The frequency oriented policy is 

preferred where the hardware resources are limited.  

 

VI. CONCLUSION 
 

In real-life, the data transmission rate of data streams is 

usually varies with time. The mining algorithm leads to a 

serious issue of data overload. The work proposes a 

feasible solution to frequent-pattern discovery in dynamic 

data streams which are prone to data overload. It proposes 
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two dedicated mechanisms for overload management. It 

extracts the item set from the received data stream and 

stores it in the base information. The frequent mining task 

uses approximate count technique to find the frequency of 

larger item set. To prevent data overload and increase data 

processing rate of data mining task, it implements self 

adaptive sliding window model as processing acceleration 

mechanisms. To increase throughput and handle data 

overload, it proposes frequency oriented policy and 

accuracy oriented policy. The results showed that the data 

processing rate is good compared with the existing 

algorithm. The accuracy-oriented policy is most suitable 

where the application gives more importance to the quality 

of mining outcome. The frequency oriented policy is 

preferred where the processor power is low. 
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