
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41251 221

Mining Stream Data with Data Load Shedding

Techniques using Self Adaptive Sliding

Window Model

C.Nalini

Professor, Information Technology Department, Kongu Engineering College, Erode, India

Abstract: Frequent patterns are patterns that appear frequently in a data set. Frequent pattern mining searches for

recurring relationships in a given data set. It plays an important role in mining associations and correlation analysis

among data, is an important data mining task. This work focuses on discovering frequent item sets in data-stream

environments which may suffer from data overload. Stream data refer to data that flow into a system in vast volumes,

change dynamically and contain multidimensional features. The traditional frequent pattern algorithms are not suitable

to find frequent patterns from stream data. This paper proposed a frequent pattern mining algorithm integrate two data

overload handling mechanisms. It extracts basic information from streaming data i.e. frequency of data items and keeps

as base information. On user requirement the frequent pattern mining algorithm generates frequent item set from base

information by using approximate inclusion-exclusion technique to calculate the approximate counts of frequent item

sets. Self adaptive sliding window time model has been implemented to process the data stream. When data overload

exists, the algorithm chooses data overload mechanism based on the nature of the data. The experimental results

showed that the mining algorithm performed well in data overload state and generated frequent item set.

Keywords: Data mining, Stream data, Frequent patterns, Approximate inclusion-exclusion, Adaptive sliding window

model, Data overload handling mechanisms.

I. INTRODUCTION

Today, many commercial applications use online services.

They have presented their data in the form of continuously

transmitted stream, namely data streams. A stream data is

ordered sequences of items that arrive continuously with

high speed and have a data distribution that often changes

with time [5]. Hence, there is a need to design an efficient

frequent pattern mining algorithm for finding frequent

item set with load shedding techniques. The association

rule mining consists of two step processes. First, find

frequent pattern from the database and then generate an

association rule. Frequent pattern mining [1] helps to

discover implicit, previously unknown, and potentially

useful knowledge in the form of frequently occurring sets

of items that are hidden in the data. Data stream mining is

a technique to continuously discover useful information or

knowledge from a large amount of running data elements.

Data stream mining algorithms implements three kinds of

time models[17] to process the stream data, i)Landmark

window model ii) Damped/fading window model iii)

Sliding window model. The landmark window model

covers all data elements that have ever been received. In

damped/fading window model, each data element is

associated with a variable weight and recent elements have

higher weights than previous ones. The sliding window

model fixed window length which moves with time is

given, and the range of mining covers the recent data

elements contained within the window. Self adaptive

sliding window model learns the sliding window control

parameters dynamically adapt the window size when

patterns are mined from the stream. A data stream mining

system may suffer the problem of data overload. The

transmission rate of a data stream is usually dynamic and

its running speed may change with time. When the data

transmission rate of the data-stream source exceeds the

data processing rate of the mining algorithm of a mining

system, e.g., during a peak period, the system is

overloaded with data and can’t handle all incoming data

elements properly within a time-unit. And also produce

flawed results or come into a crash. To solve this problem

data overload mechanism should be incorporated within

the algorithm to adequately deal with data overload. In this

paper, two data overload mechanism has been proposed

for discovering frequent patterns effectively in

transactional data streams. The rest of this paper is

organized as follows. In Section 2, related work regarding

data-stream frequent-pattern mining and data-overload

handling is described. Section 3 represents the problem

definition. In Section 4, a mining algorithm together with

two overload-handling mechanisms is proposed and

explained in detail. Section 5 presents the analysis of

experimental results. Finally, Section 6 concludes this

work.

II. RELATED WORK

Apriori algorithm [1] is the first algorithm for mining

frequent item sets. It has implemented an iterative

approach known as a breadth-first search through the

search space where k-item sets have used to explore (k+1)-

item sets. It scanned the database each time to generate

candidate item set. As a result, it has required more time

complexity and space complexity to complete the task.

Discovering frequent item set from data stream is more

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41251 222

challenging as (i) data streams are continuous and

unbounded (ii) data in the streams are not necessarily

uniformly distributed. Frequent-pattern mining [2] from

the data streams have initially limited to singleton items.

Lossy Counting (LC) [13] is the first practical algorithm

used to discover frequent item sets from transactional data

streams. This algorithm has implemented under the

landmark window model. In addition to the minimum-

support parameter (ms), LC also uses an error-bound

parameter ε to maintain those infrequent item sets having

the potential to become frequent in the near future. LC has

processed the stream data batch by batch, and each batch

includes bucket(s) of transactions. With the use of

parameter ε, when an item set newly found LC had known

the upper-bound count of the frequent item set. In [3], the

author has implemented LC algorithm using a sliding

window model. The authors [14] suggested the

Approximate Inclusion–Exclusion technique to obtain the

frequent count of k-item set from frequent 2-item set. If all

the subsets value had known, then the actual value of a

union term would have been found easily. Apriori

algorithm scanned the database multiple times to generate

frequent item sets. However, it is not possible in data

stream mining. Since the system couldn’t retrieve the past

data stream details from current data stream, has required

more memory to store it.

The authors [11] proposed a data stream frequent pattern

mining algorithm under the sliding window model, used

DS-Tree data structure for capturing the contents of

transactions in each batch of data within the current sliding

window. It required more time to update the tree structure

for every batch. According to the experimental results, the

algorithm has attained 100% accuracy but not suitable for

long stream transactions. Since this method should have

enumerated item set for each transaction. CPS-Tree which

has closely related to DS-Tree, the authors [16] used to

discover frequent patterns from a data stream under sliding

window model. Unlike DS-Tree, CPS-Tree stored the

batch information only at the last node of each path to

reduce the memory consumption.

The authors of [3] proposed Online Combinatorial

Approximation (OCA) algorithm, use Apriori algorithm to

find frequent 2-item sets. It generates higher order

frequent item sets from frequent 2-item sets using

Approximate Inclusion–Exclusion technique. It required

less time to generate n-frequent item set compared with

traditional algorithms, not suitable for mining frequent

item sets over transactional data streams. The authors

extended the algorithm and named as Data Stream

Combinatorial Approximation algorithm (DSCA) [9]

which has been implemented under the landmark window

model and generates all item sets of length 1 and 2

existing in the data stream. The mining task used

Approximate Inclusion-Exclusion technique to compute

the approximate count of longer item sets during frequent

pattern mining. It kept all the details in the base

information to generate higher order frequent item sets.

The Loadstar system [5] measures the level of uncertainty

in the classification model. The experimental results

showed that offers a good solution to data-stream

classification with the presence of system overload. The

authors of [7] proposed a load controllable frequent

pattern mining system which used LC under sliding

window model. The system effectively handles the

workload during peak periods. Three kinds of load

shedding mechanisms proposed in [4] to address the data

overload like i) Efficiency oriented policy ii) Complexity

oriented policy iii) Accuracy oriented policy. The

proposed work incorporates these load shedding

mechanisms in frequent pattern mining task to handle load

at peak periods.

III. PROBLEM DEFINITION

Let I ={x1, x2, . . ., xz} be a set of attributes, and each xi in

I be a single item. An item set (or a pattern) X is a subset

of I and written as X = xi x j. . .xm. The length of an item

set is the number of items it contains, and an item set of

length l is called an l-item set. A transaction T consists of

a set of ordered items, and T supports an item set X if

X€T. The support of an item set X in a group of

transactions is the number of occurrences of X within the

group. An item set X of length l which is a subset of

another item set Y or a transaction T is called a l-subset of

Y or T. A transaction data stream on I is a continuous

sequence of elements where each element is a transaction.

A threshold of minimum support (ms) and a size of the

sliding window (sw) are two parameters specified by the

user. The objective of frequent-pattern mining is to find

frequent pattern from data elements within the current

sliding window. There are two basic strategies have used

to design a sliding window model in data stream mining

i)count based window model ii)time based window model.

Assume that there is a mining algorithm A running on a

mining system and a data-stream source D. Let the

processing rate of A on stream elements be z transactions

in a time-unit, and the data transmission rate of D be w

transactions at a time. A data stream is continuous and

dynamic; its transmission rate is dynamic. The data load L

at a point is defined to be the ratio of transmission rate to

processing rate at that point,(i.e) L = w/z. As the value of

w becomes greater and closer to that of z, the mining

system which operates A will get busier in processing the

continuously arriving data.

When the transmission rate of D becomes higher than the

data processing rate of A (i.e., w > z or L is over 100%),

the mining system is said to be data overloaded. In a data-

overloaded situation, the system will receive a batch of w

stream transactions within a time-unit whose quantity goes

beyond its processing capability of z transactions. Data

overload may cause a mining system to perform

abnormally. It is an important issue for a data-stream

mining algorithm which should not be neglected. The goal

of this research work is to develop a mining algorithm

together with mechanisms for overload management to

support frequent-item set discovery under self adaptive

sliding window model in a dynamic data-stream

environment.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41251 223

3.1 Self Adaptive Sliding Window Model

The proposed algorithm uses self adaptive sliding window

model for processing the data stream. In this model, the

total window (W) was divided into two sub-windows as

W0 and W1. The length of an item sets in W0 and W1 is

denoted as n0 and n1.respectively. The total number of

transactions in the data stream was denoted as n. The

harmonic mean(m) is calculated by using equation(1)

 1
11

1

10 nn

m

The approximate confidence value was calculated with

respect to user specified confidence value and the total

number of transactions n. The approximate confidence

value
ιδ is calculated by using equation(2)

 2
n

δ
δι

The window size of the self adaptive sliding window

varies each and every time based on the batch that enters

into the sliding window The cut is used for splitting the

sub-windows dynamically based on the batch size. The

cut value was obtained by harmonic mean and an

approximate confidence value. The Equation 3 denotes the

cut value based on the current batch in the sliding

window.

 3
4

ln.
2

1

m
cut

IV. FREQUENT PATTERN MINING ALGORITHM

WITH LOAD SHEDDING MECHANISMS

4.1 Transaction data stream

The transaction data stream consists of set of transaction

with its respective item set of market basket data. Table 1

denotes the sample transaction dataset. It consists of ten

transactions. The item set I has 4 items like {milk, bread,

cheese, butter}

Table 1 Sample Transaction Dataset

TID ITEMS

T01 {milk, cheese, butter}

T02 {milk, bread, cheese, butter}

T03 {cheese, butter}

T04 {milk, bread, butter}

T05 {bread, butter}

T06 {bread, cheese}

T07 {milk, butter}

T08 {milk, bread, cheese}

T09 {milk, bread, butter}

T10 {milk, bread, cheese, butter}

4.2 Frequent 2- Item Set Generation

At first step, frequent item set mining algorithm computes

the frequency count of 1 and 2-item sets by scanning the

transaction from the data stream. The base information

contains the frequency count of all 1-item sets and 2-item

sets existing in the data stream by using Apriori algorithm.

4.1.3 Frequent N-Item Set Generation by using

Approximate Inclusion-Exclusion Technique

4.1.3.1 Skip and Complete Technique

The skip and complete technique accelerates the speed of

processing and increases the throughput of the frequent

mining algorithm. For every incoming transaction, it finds

all 1-item set, 2-item set and records their counts and

stores the same in the base information. Assume that every

transaction is sorted in order with its items in pattern-

growth manner. In skip and complete technique, 3-item set

is generated by joining a 2-item set with a 1-item, where a

2-itmset is called a prefix item set while a 1-item is called

a stem item. Fig. 1 illustrates the process of skip and

complete technique.

Fig. 1 Skip and complete technique

There is a transaction which consists of 4 items. For

finding all 3-item set subsets involved in this transaction, a

basic and intuitive way is to fix a certain prefix item set

first, and then sequentially finds all stem items with the

members of that prefix item set. Every found stem item

joining with the prefix item set will result in a 3-item set.

For the transaction in Fig. 1, it starts with the least prefix

item set {milk,bread} to generate 3-item sets. When prefix

{milk,bread} is done, it then proceeds with prefix

{milk,cheese}, prefix {bread,cheese}, and so forth.

The basic idea behind this technique is that, even if it does

not access all stem items of all prefix item sets in a

transaction, it can still find all the 3-item set subsets

contained in that transaction completely and correctly.

Since it access all stem items of every prefix item set, the

saving in access time may reduce the process time of

handling every incoming transaction, hence the throughput

of the incoming stream processing is improved.

4.1.3..2 Group Count Technique

The group count technique dealt with the intention to

reduce the memory consumption of mining algorithm. If

the user wishes to keep information about the entire item

set of length 3 in the lexicographic order tree, it needs

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41251 224

more than 166 million additional nodes for recording. This

amount of nodes will consume a great deal of memory

space, perhaps more than 1 GB. In the consideration

between the approximate accuracy and the memory usage,

it is designed a way to record the 3-item sets’ counts in

grouped form. 3-item sets which belong to the same 2-

item set prefix are grouped by a number of n, and then

their counts are recorded together. That is, it makes every

3-item sets to form a group, and increase the group’s count

when any member in that group is found in a transaction.

Fig. 2 Group count technique

 Fig. 2 illustrates the process of group count technique, for

all 3-item sets which have 2-item set prefix {milk, bread}

in the data stream, it make every four item sets to form a

group which belongs to {milk, bread} and the number of

all groups of {milk, bread} in proper order. When any

member of {milk, bread, cheese},{milk, bread, butter} is

found in a transaction , it increases the count of the group

it belongs to. With this technique, it can keep the

information about 3-item set with less memory usage.

4.1.3.3 Approximate Inclusion-Exclusion Technique

The frequent item set of length n can be calculated by

using the approximate inclusion exclusion technique

without continual scanning the data stream. The

approximate inclusion exclusion technique is based on

principle of inclusion exclusion technique. With this

technique, approximate count of each frequent item set can

be generated. The Principle of Inclusion and Exclusion is

under combinatorial mathematics.

 4 m...A
2

A
1

A
1m

1 ...

kji k
A

j
A

I
A

ji j
A

I
A

i
AmA...

2
A

1
A

The Equation 4 is applied for calculating the support count

of item sets mA...2A 1A . It derives the support count

for m-item set, only if all the subsets are given. If any of

the subsets are not available, only the approximate count

can be calculated.

 5

mO k if iAsi
ks

mk,

s
α

2k

m
O

,mΩk if iAsi
ks

mk,

s
α

m2k
eO1

|
m

A...
2

A
1

A|

The Equation 5 has been derived from the principle of

approximate inclusion-exclusion which is used for

calculating the approximate count. Here k denotes the base

information size, m denotes the candidate item sets length

and S denotes the subsets.

In Equation 5,
iAsi

ks

 denotes the summation of

counts for all m-subsets with length m and mk
s
,

represents the coefficients of the linearly transformed

Chebyshev polynomial which refers to the variety of items

including first or most significant item set whose values is

derived as follows.

 6 .

1

,,
ij

k

i

mk
i

mk
j at

In Equation 6, i,j,k,m represents the item set, length of an

item set, base information size, target item set length

respectively, where m=k+1. ija represents the i
th

 item set

of j
th

 item set and t represents the constant value with

respect to i,k,m.

 71
1m

1)(m

1m

1)(m
1

1m

1)(m

1m

1)(m /2
i

11mk,
i

t

k

2

k

2

 8
 ij if 0

ij if)1(

 j

i

ji

ij

C

The Equation 8 is used to calculate i
th

 item set of j
th

 item

set. C represents the combination in combinatorial

mathematics and j
iC represents the combination of i item

set from j item set.

 9 ||...

\\

,
||21

si

i

ks

mk
sm AAAA

The Equation 9 is used for calculating the approximate

count of m item set with the help of m-union item set

value which is obtained from Equation 4.1.Here, down

closure property is used to prune the item sets.

4.1.4 Overload Handling Mechanism

The algorithm has higher performance on processing

incoming stream elements than ε-deficient mining or exact

stream mining methods, since it keeps base information

and carries out the mining task. It calculates a count

approximation for candidate item sets based on the kept

information. The base information consists of k orders of

item sets out on all orders of item sets. So, the

performance of the algorithm is better than ε-deficient

mining or exact stream mining methods. As a result, the

algorithm easily handles the data overload .The processing

rate and processing time of an algorithm used to measure

the performance of the algorithm. The proposed algorithm

uses processing acceleration mechanism and adaptive

sliding window model to raise the data processing rate of

the mining algorithm. Approximate Inclusion–Exclusion

technique is used to implement processing acceleration

mechanism.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41251 225

When the data transmission rate of a data stream D

becomes higher than the data processing rate of a mining

algorithm A, the mining system receives stream elements

within a time-unit by the amount w beyond its processing

capability of z elements. Assume that the average length

of stream elements in a batch is n items per transaction. To

solve this problem the proposed algorithm proposes

priority based data load shedding techniques which prunes

the received data. The discarded data may be an attribute

or a transaction. Dropping the unprocessed data without

any care may bring about effects on the performance of

mining because the discarded data may have some useful

information. It proposes two policies i) Frequency oriented

policy ii) Accuracy oriented policy.

4.1.4.1. Frequency Oriented Policy

This policy prunes the unprocessed data in terms of

attribute. If the amount of attributes in a data source is

decreased, the possible number of pattern combinations

will be correspondingly diminished. The priority function

utilizes down closure property of an item set (i.e) the

frequency count in the previous batch to decide the

priority value of each attribute. Since an attribute with low

frequency has less influence on the frequent pattern

generation than an attribute with high frequency, discard

the attributes which are having low frequencies. An array

is used to record the counts and priority values of the

attributes, which is called as priority table. In these

transactions, those attributes having the lowest priority

values are eliminated from the transactions.

4.1.4.2. Accuracy Oriented Policy

The accuracy oriented policy aims at preserving the

accuracy of mining after load shedding. The load shedding

mechanism with this policy trims the unprocessed data by

deleting some transactions inside it. This policy use

counts-bounding technique proposed by Jea and Li (2009),

to approximate the count of an item set X. A transaction

containing more 2-item sets which are frequent is

considered to be more important than a transaction

containing less frequent 2-item sets. The transaction

having lowest count will be given less priority and is

discarded. Because the function of frequent 2-item sets is

to limit the count ranges of 1-item sets, a transaction

containing more 2-item sets which are frequent is

considered to be more important than a transaction

containing less frequent 2-item sets. This policy requires

some feedback information from the previous batch. If a

transaction contains less potential frequent 2-item sets, it

has lower priority-value and will be dropped with a higher

possibility. It is a time consuming problem. So the

algorithm use group count technique to quickly calculate

the maximum possible number of potential frequent 2-item

sets (as subsets) in a transaction.

Algorithm:

Input: A transactional data stream (D), the minimum-

support value (ms), initial sliding-window size (sw)

Output: A set of frequent item sets F

Method:

Build an empty trie P;

while (data of D is still streaming)

 do begin

Clear the contents in F;

 while (there is no request from the user)

do begin

 Receive from D a batch B of transactions;

 Calculate n the average length of transactions in B;

 Compute the window size by using Eq.(3.3) and

 update window size

 Set the base-information size k for a value

 satisfying k ≥√n

 for (i = 1; i ≥ k; i++)

 do

 Extract all i-itemsets whose supports in B

 satisfy the base threshold ˇ;

 Update entries of the found i-itemsets in P;

 end for

update the base information

 end while

for (i = 1; i ≥ k; i++) do

Find all large i-itemsets in P and insert them as Fi into

F;

end for

for (m = k + 1; F m−1 ≠ NULL; m++)

do

foreach candidate m-itemsets X

do

Calculate the counts of X by Eq. (4.1) based on the

base information;

if X’s approximate count _ sw×ms then

Insert X as a member of Fm into F;

end if

 end foreach

end for

Return F as the mining outcome;

end while

V. EXPERIMENTAL ANALYSIS

This section shows empirical evidence about the proposed

method. The experiments were conducted to evaluate the

performance of the algorithm as well as the overload-

handling mechanisms. All experiments were carried out on

a platform of personal computer with an Intel 2.80 GHz

dual-core processor with 2 GB of available memory space

in WindowsXP operating system. The programs of the

mining algorithm and the overload-management

mechanisms are implemented using NETBEANS. The

testing data include both synthetic and real-life datasets.

Synthetic datasets are created by using IBM’s synthetic-

data generator and each dataset is generated with the

parameters Ts.It.Du.Av, where s, t, u, and v respectively

represent the average length of transactions, the average

length of potentially frequent item sets, the amount of

transactions, and the amount of attributes in the dataset.

Every adopted synthetic dataset consists of 700 thousand

of transactions. The real-life dataset used in the

experimental evaluation is BMS-POS, which can be

acquired from the well-known website namely FIMI. This

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41251 226

dataset contains a several-year quantity of point-of-sale

data from a large electronics retailer. These datasets are

used to simulate transactional data streams.

The sliding window in the experiments is set for the size

of 700k of transactions. Initially it is divided into 70

equal-sized segments. In next iteration the window size is

calculated automatically based on the size of the stream.

The base threshold ˇis set to be 5 occurrences in a batch.

The algorithm is evaluated based on mining performance

and mining accuracy, where performance is measured in

terms of run-time and accuracy is measured in terms of

precision, recall and Fβ measure is used to evaluate the

accuracy of the algorithm, measures the effectiveness of

retrieval with respect to a user β times as importance to

recall as precision. It is based onVan- Rijsbergen’s

effectiveness measure

 111
 RPE

 (10)

E1F (11)

Where
21

1

 , β is user defined value (i.e.) at what

percentage the user give importance to recall.

Implementing Lossy Counting (LC) algorithm under self

adaptive sliding window model using NETBEANS for

comparison. The minimum support (ms) in the experiment

is in the values ranging from 0.1% to 1.0%; the parameter

ε of Lossy Counting is set to be 0.1*ms, which is

suggested by the authors. Given a test dataset, mining

algorithms are run on the dataset several times with

different values of ms and find the optimal value. First

generate a T15.I6 dataset. Since the average length n of

transactions in this dataset is 15, it can be calculated that

n =4.The default size k of base information to be 5.

5.1 Experiment 1: Frequrent Data Stream Mining

without Data Load Shedding Techniques

Fig. 3 and Fig. 4 show the mining performance of the

proposed algorithm and Lossy counting algorithm. The

run-time of the proposed algorithm has less impact with

different values of ms. But, Lossy Counting runs as fast as

the algorithm at larger values of ms but its run-time gets

longer as smaller ms are given. This fact is due to the

number of frequent item set is high when ms has low value

and the value of ε dependent on ms. The processing

acceleration mechanism useful for reducing the processing

time of the proposed algorithm.

Fig. 3 Mining Performance on T15.16

Fig. 4 Mining Performance BMS-POS data set

Fig. 5 Mining accuracy on T15.16

Fig. 6 Mining Accuracy on BMS-POS

Fig. 5 and Fig. 6 illustrate the mining accuracy of the

algorithms on T15.16 and BMS-POS data set. From the

results observed that the mining accuracy of the proposed

algorithm is slightly lower than the LC algorithm at low

ms values. The proposed algorithm gives 75% importance

to recall than precision. But, its average score of Fβ-

measure is greater than 94%. It shows that generate more

accurate result than LC method. From the result, the

processing acceleration mechanism (i.e.) self adaptive

sliding window model and dynamic k size lend a hand to

improve the throughput of the algorithm.

96

97

98

99

100

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Fβ
 M

e
as

u
re

% of Minimum Support

Mining Accuracy on T15.I6

Loosy
counting

Proposed

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41251 227

5.2 Experiment II: Algorithm with Data Load

Shedding Techniques

Fig. 7 Mining performance of proposed alogithm with load

shedding techniques on T15.16

Fig. 8 Mining performance of proposed alogithm with

load shedding techniques on BMS-POS data

Fig. 9 Mining accuracy of proposed alogithm with load

shedding techniques on T15.16

Fig 10 Mining accuracy of proposed alogithm with load

shedding techniques on BMS-POS data

In this experiment, the performance of the algorithm is

evaluated with the load shedding mechanism during data

overloading situations. The two proposed policies for the

mechanism are separately tested and then compared

together. The performance is tested on different data-load

degrees, ranges from 80% (i.e., normal) to 150% (i.e.,

highly overloaded) with 10% intervals.

Lossy Counting requires more run time than the proposed

method across different data loads. Since it has no data

overload shedding function. So, it needs to process and

maintain larger amount of item sets. When the data load

shedding mechanism is disabled, the proposed algorithm

needs more run time. If the data load shedding mechanism

is enabled, then the run time of the proposed algorithm is

reduced based on the policy being adopted. The frequency

oriented policy reduces the number infrequent item set

based on down closure property. So the number of item set

combination is reduced in the trimmed data set. The

accuracy-oriented policy trims the unprocessed data by

deleting some transactions inside it by using counts

bounding technique to approximate the count of an item

set X. This policy requires some feedback information

from the previous batch. It consumes more run time

compared with frequency oriented policy. The mining

accuracy of this policy is preserved by counts bounding

technique. The choice of data load shedding policy is fully

dependent on the application needs. Since the different

applications have different priorities of quality and

performance requirements. From the analysis I concluded

that, the accuracy-oriented policy is most suitable where

the application give more importance to the quality of

mining outcome. The frequency oriented policy is

preferred where the hardware resources are limited.

VI. CONCLUSION

In real-life, the data transmission rate of data streams is

usually varies with time. The mining algorithm leads to a

serious issue of data overload. The work proposes a

feasible solution to frequent-pattern discovery in dynamic

data streams which are prone to data overload. It proposes

0

5

10

15

20

R
u

n
 T

im
r(

Se
c/

W
in

d
o

w
)

Data Load

Mining Performance- T15 I6

Loosy
Counting

Frequency

Accuracy

0

5

10

15

20

80% 100% 120% 140%R
u

n
 T

im
e

(S
e

c/
W

in
d

o
w

)

Data Load

Mining Performance -BMS POS data

Loosy
Counting

Frequency

Accuracy

0

20

40

60

80

100

Fβ
 m

e
as

u
re

Data Load

Mining Accuracy- T15I6

Frequency

Accuracy

0

20

40

60

80

100

8
0

%

9
0

%

1
0

0
%

1
1

0
%

1
2

0
%

1
3

0
%

1
4

0
%

1
5

0
%

Data Load

Mining Accuracy- BMS-POS

Frequency

Accuracy

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41251 228

two dedicated mechanisms for overload management. It

extracts the item set from the received data stream and

stores it in the base information. The frequent mining task

uses approximate count technique to find the frequency of

larger item set. To prevent data overload and increase data

processing rate of data mining task, it implements self

adaptive sliding window model as processing acceleration

mechanisms. To increase throughput and handle data

overload, it proposes frequency oriented policy and

accuracy oriented policy. The results showed that the data

processing rate is good compared with the existing

algorithm. The accuracy-oriented policy is most suitable

where the application gives more importance to the quality

of mining outcome. The frequency oriented policy is

preferred where the processor power is low.

REFERENCES

[1]. R.Agrawal., R.Srikant, “Fast algorithms for mining association

rules”, Proceedings of the 20th international conference on VLDB,

1994,pp. 487–499.
[2]. M.Charikar., K.Chen, M.Farach-Colton,” Finding frequent items in

data streams”, Theoretical Computer Science, Vol. 312,No.1, 2004,

pp..3–15.
[3]. J.H Chang, W.S.Lee, “A sliding window method for finding

recently frequent item sets over online data streams”, Journal of

Information Science and Engineering , Vol.20, No.4, 2004,
pp.753–762.

[4]. Chao-Wei Li., Kuen-Fang Jea., Ru-Ping Lin., Ssu-Fan Yen., Chih-

Wei Hsu., “Mining frequent patterns from dynamic data streams
with data load management”, Journal of Systems and Software,

Vol.85, No. 6, 2012 pp. 1346-1362.

[5]. Y.Chi, P.S. Yu, H.Wang, R.R.Muntz, “Loadstar: a load shedding
scheme for classifying data streams”, Proceedings of the 5th SIAM

Conference on Data Mining, 2005,pp. 346–357

[6]. Chung Laung Liu., “Introduction to Combinatorial Mathematics”,
McGraw-Hill, New York,1968.

[7]. K.F. Jea,C.W. Li, C.W. Hsu,R.P. Lin,S.F. Yen, “ A load

controllable mining system for frequent-pattern discovery in
dynamic data streams”, Proceedings of the 9th Conference on

Machine Learning and Cybernetics, 2010 pp. 2466–2471.

[8]. N. Jiang,L. Gruenwald,”Research issues in data stream association
rule mining”, SIGMOD Record, Vol.35, No.1, 2009, pp. 14–19.

[9]. K.F Jea., C.Wei Li., “Discovering frequent item sets over

transactional data streams through an efficient and stable
approximate approach”, Expert Systems with Applications, Vol. 36,

No.10, 2009, pp. 12323–12331.

[10]. K.F Jea., M.Y. Chang., K.C.Lin., “An efficient and flexible
algorithm for online mining of large item sets”, Information

Processing Letters, 2004, pp. 311–316.

[11]. C.K.S. Leung, Q.I. Khan, “DSTree: a tree structure for the mining
of frequent sets from data streams”, Proceedings of the 6th

Conference on Data Mining,2006, pp. 928–932.

[12]. C.K.S. Leung, B. Hao,” Mining of frequent item sets from streams
of uncertain data”, Proceedings IEEE ICDE ,2009,pp. 1663–1670

[13]. Manku Garofalakis., Motwani., “Approximate frequency counts

over data streams”, Proceedings of the 28th Conference on Very
Large Data Bases, 2002, pp. 346–357.

[14]. Nathan Linial., Noam Nisan., “Approximate Inclusion Exclusion”.

Combinatoria, Vol. 10, No.4, 1990, pp. 349-365.
[15]. Sudipto Guha, Nick Koudas, Kyuseok Shim,”Data Streams and

Histograms”, ACM Symposium on Theory of Computing, ,2001

[16]. S.K. Tanbeer, C.F Ahmed, B.S. Jeong, Y.K. Lee, “Sliding window-
based frequent pattern mining over data streams”, Information

Sciences , Vo.179,No.22, 2009,pp. 3843–3865.

[17]. Y. Zhu, D. Shasha, “StatStream: statistical monitoring of thousands
of data streams in real time”, Proceedings of the 28th Conference

on Very Large Data Bases, 2002, pp. 358–369.

